首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77787篇
  免费   1371篇
  国内免费   1828篇
测绘学   2676篇
大气科学   5902篇
地球物理   14976篇
地质学   32166篇
海洋学   5808篇
天文学   13004篇
综合类   2376篇
自然地理   4078篇
  2022年   282篇
  2021年   454篇
  2020年   455篇
  2019年   517篇
  2018年   7284篇
  2017年   6568篇
  2016年   4557篇
  2015年   1021篇
  2014年   1185篇
  2013年   2052篇
  2012年   3023篇
  2011年   6108篇
  2010年   5299篇
  2009年   5958篇
  2008年   4843篇
  2007年   5826篇
  2006年   1908篇
  2005年   1931篇
  2004年   1893篇
  2003年   1843篇
  2002年   1496篇
  2001年   976篇
  2000年   973篇
  1999年   740篇
  1998年   809篇
  1997年   724篇
  1996年   582篇
  1995年   603篇
  1994年   519篇
  1993年   454篇
  1992年   450篇
  1991年   422篇
  1990年   480篇
  1989年   393篇
  1988年   378篇
  1987年   471篇
  1986年   376篇
  1985年   495篇
  1984年   586篇
  1983年   516篇
  1982年   515篇
  1981年   473篇
  1980年   493篇
  1979年   411篇
  1978年   393篇
  1977年   382篇
  1976年   353篇
  1975年   337篇
  1974年   342篇
  1973年   381篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Understanding the effects of simulated warming on photosynthetic performance of aquatic plants may provide strong supports for predicting future dynamics of wetland ecosystems in the context of climate change. The plateau wetlands located in Yunnan province are highly sensitive to climate warming due to their high altitude and cold temperature. Here, we conducted a temperaturecontrolled experiment using two temperature manipulations (ambient temperature as the control and 2°C higher than ambient temperature as the warmed treatment) to determine the photosynthetic characteristics of two lakeside dominant species (Scirpus validus Vahl and Typha orientalis C. Presl.) in Dianchi Lake. Net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate of S. validus that grew under warmed treatment were all significantly higher than those under the control. Gs and Ci of T. orientalis showed similar patterns as S. validus did. For the response curves of Pn to photosynthetic active radiation (Pn-PAR) and intercellular CO2 concentration (Pn-Ci), S. validus had higher Pn values under elevated temperatures than the control, while Pn-PAR and Pn-Ci curves of T. orientalis did not separate clearly under two temperature scenarios. Both S. validus and T. orientalis had higher maximum net photosynthetic rate, light saturation point, dark respiration rate, the maximum rate of RuBP carboxylation (Vcmax), maximum electron transport rate driving RuBP regeneration (Jmax), the ratio of Vcmax to Jmax, triosephosphate utilization, and 1, 5-bishosphate carboxylase ribulose content under warmed treatment than those under the control. This study provides a preliminary step for predicting the future primary production and vegetation dynamics of plateau wetlands in Yunnan province.  相似文献   
52.
Northeast China experiences severe atmospheric pollution, with an increasing occurrence of heavy haze episodes. However, the underlying forces driving haze formation during different seasons are poorly understood. In this study, we explored the spatio-temporal characteristics and causes of haze events in Northeast China by combining a range of data sources(i.e., ground monitoring, satellite-based products, and meteorological products). It was found that the ‘Shenyang-Changchun-Harbin(SCH)'city belt was the most polluted area in the region on an annual scale. The spatial distribution of air quality index(AQI) values had a clear seasonality, with the worst pollution occurring in winter, an approximately oval-shaped polluted area around western Jilin Province in spring, and the best air quality occurring in summer and most of the autumn. The three periods that typically experienced intense haze events were Period I from mid-October to mid-November(i.e., late autumn and early winter), Period II from late-December to February(i.e., the coldest time in winter), and Period III from April to mid-May(i.e., spring). During Period I, strong PM_(2.5) emissions from seasonal crop residue burning and coal burning for winter heating were the dominant reasons for the occurrence of extreme haze events(AQI 300). Period II had frequent heavy haze events(200 AQI 300) in the coldest months of January and February, which were due to high PM_(2.5) emissions from coal burning and vehicle fuel consumption, a lower atmospheric boundary layer, and stagnant atmospheric conditions. Haze events in Period III, with high PM_(10) concentrations, were primarily caused by the regional transportation of windblown dust from degraded grassland in central Inner Mongolia and bare soil in western Jilin Province. Local agricultural tilling could also release PM_(10) and enhance the levels of windblown dust from tilled soil. Better control of coal burning, fuel consumption, and crop residue burning in winter and autumn is urgently needed to address the haze problem in Northeast China.  相似文献   
53.
Remote sensing data have been widely applied to extract minerals in geologic exploration, however, in areas covered by vegetation, extracted mineral information has mostly been small targets bearing little information. In this paper, we present a new method for mineral extraction aimed at solving the difficulty of mineral identification in vegetation covered areas. The method selected six sets of spectral difference coupling between soil and plant (SVSCD). These sets have the same vegetation spectra reflectance and a maximum different reflectance of soil and mineral spectra from Hyperion image based on spectral reflectance characteristics of measured spectra. The central wavelengths of the six, selected band pairs were 2314 and 701 nm, 1699 and 721 nm, 1336 and 742 nm, 2203 and 681 nm, 2183 and 671 nm, and 2072 and 548 nm. Each data set’s reflectance was used to calculate the difference value. After band difference calculation, vegetation information was suppressed and mineral abnormal information was enhanced compared to the scatter plot of original band. Six spectral difference couplings, after vegetation inhibition, were arranged in a new data set that requires two components that have the largest eigenvalue difference from principal component analysis (PCA). The spatial geometric structure features of PC1 and PC2 was used to identify altered minerals by spectral feature fitting (SFF). The collecting rocks from the 10 points that were selected in the concentration of mineral extraction were analyzed under a high-resolution microscope to identify metal minerals and nonmetallic minerals. Results indicated that the extracted minerals were well matched with the verified samples, especially with the sample 2, 4, 5 and 8. It demonstrated that the method can effectively detect altered minerals in vegetation covered area in Hyperion image.  相似文献   
54.
Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers (0-400 cm depth) was measured before and after the rainy season in severe drought (2015) and normal hydrological year (2016) in three vegetation restoration areas (artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers (0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers (below 100 cm). In 2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau  相似文献   
55.
The conditions for accurate electron density diagnostics in the solar transition region are discussed, and result shows that lines from Si?viii can provide an excellent tool for electron density diagnostics of the emitting plasma. For the Si?viii 1440.50 Å and 1445.75 Å lines, the principle of the electron density diagnostics is discussed for any intensity ratio. By the observed intensity ratio, the diagnostic results of the electron density for the quiet sun and the active region are calculated, and results indicate that in the quiet sun, the averaged electron density is \(\log (N_{e}) = 8.63\); while in the active region, the averaged density gets the maximum \(\log (N_{e}) = 8.86\) in the active region (B), and gets the minimum \(\log (N_{e}) = 8.38\) in the active region (E), where the electron density is in the unit of cm?3. Finally, the relationship of intensity ratio and electron density is discussed, in the case of lower and higher electron density limits. This discussion is significant in the electron density diagnostics, which will be important for study on coronal heating and acceleration of solar wind.  相似文献   
56.
The solar-cycle oscillations of the toroidal and poloidal components of the solar magnetic field in the northern solar hemisphere have a persistent phase difference of about \(\pi \). We propose a symmetrical Kuramoto model with three coupled oscillators as a simple way to understand this anti-synchronization. We solve an inverse problem and reconstruct natural frequencies of the top and bottom oscillators under the conditions of a constant coupling strength and a non-delayed coupling. These natural frequencies are associated with angular velocities of the meridional flow circulation near the solar surface and in the deep layer of the solar convection zone. A relationship between our reconstructions of the shallow and the deep meridional flow speed during recent Solar Cycles 21?–?23 is in agreement with estimates obtained in helioseismology and flux-transport dynamo modeling. The reconstructed top oscillator speed presents significant solar-cycle like variations that agree with recent helioseismical reconstructions. The evolution of reconstructed natural frequencies strongly depends on the coupling strength. We find two stable regimes in the case of strong coupling with a change of regime during anomalous solar cycles. We see the onset of a new transition in Solar Cycle 24. We estimate the admitted range of coupling values and find evidence of cross-equatorial coupling between solar hemispheres not accounted for by the model.  相似文献   
57.
58.
The propagation and Poincaré mapping of perturbed Keplerian motion is a key topic in Celestial Mechanics and Astrodynamics, e.g., to study the stability of orbits or design bounded relative trajectories. The high-order transfer map (HOTM) method enables efficient mapping of perturbed Keplerian orbits using the high-order Taylor expansion of a Poincaré or stroboscopic map. The HOTM is only accurate close to the expansion point and therefore the number of revolutions for which the map is accurate tends to be limited. The proper selection of coordinates is of key importance for improving the performance of the HOTM method. In this paper, we investigate the use of different element sets for expressing the high-order map in order to find the coordinates that perform best in terms of accuracy. A new set of elements is introduced that enables extremely accurate mapping of the state, even for high eccentricities and higher-order zonal perturbations. Finally, the high-order map is shown to be very useful for the determination and study of fixed points and center manifolds of Poincaré maps.  相似文献   
59.
Settling velocity is one of the important parameters in sediment transport modeling of estuaries. The methods adopted for its determination vary from theoretical equations to experimental methods. The theoretical equation generally adopted in the 1DV model include assumptions in order to simplify the solution. It is generally assumed that either the condition is steady or the vertical diffusion is negligible. This study evaluated the relative importance of the two assumptions made for the estimation of settling velocity. Two approaches were adopted: unsteady and negligible vertical diffusion (NS-NVD) and steady with vertical diffusion (S-VD) to estimate the settling velocity. The Muthupet Estuary in the Coromandal coast of India was selected for the study. The S-VD approach estimated settling velocity fairly well at the two locations with appreciable vertical diffusion. The NS-NVD approach was observed to be superior for estimating settling velocity at shallow reaches of the estuary having low flow velocity. The calculated settling velocity was further applied in 1DV model to predict the suspended sediment concentration. The S-VD approach predicted suspended sediment concentration at those locations with appreciable vertical diffusion with an R2 value of 0.82 against 0.67 for the NS-NVD approach. At the other shallow reach of the estuary with low flow velocity, the NS-NVD approach gave an R2 value of 0.822 against 0.71 for the S-VD approach. The vertical diffusion was observed to play a secondary role at those locations which are shallow with a water depth of 0.6 m and with a low flow velocity of the order of 0.01 m/s. The study demonstrated that localized hydrodynamic conditions influence the method adopted for the estimation of settling velocity.  相似文献   
60.
In this study, two designs for a buoy capable of supporting a 10 kW wind turbine and its tower were developed to operate at the University of New Hampshire’s Center of Ocean Renewable Energy testing site located off the Isles of Shoals, New Hampshire. The buoys are to be moored by a catenary chain system. To evaluate wave response, two Froude-scaled models were constructed, tested, and compared at the Ocean Engineering wave tank at the University of New Hampshire. These buoys have been implemented and compared with wave tank measurements of the spar displacement at a reference elevation 2.44 m above the mean water level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号